
SPRING
INITIALIZER

SPRINGFRAMEWORK.GURU

AOP: AOP that stands for Aspect-Oriented Programming is a

programming paradigm to make cross-cutting concerns of an

application , such as transaction management , logging , security , and

data transfer modular . Cross-cutting concerns are separated from the

business logic as aspects . An aspect performs action (advice) on a

point , also known as join point during the execution of a program .

Spring AOP is a framework that brings in AOP style of programming to

applications using either a schema-based approach or the @AspectJ

annotation style .

https ://docs .spring .io/spring/docs/current/spring-framework-reference

/html/aop .html

Atomikos (JPA): A popular open source transaction manager . Using

this dependency , you can embed Atomikos into your Spring Boot

application . When you add the Atomikos dependency in your

application , Spring Boot auto-configures Atomikos and applies

CORE

CHEAT SHEET

PAGE 1

https://springframework.guru/
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/aop.html

appropriate settings to your Spring beans to perform startup and

shutdown of the transaction manager in the correct ordering .

https ://www .atomikos .com/Documentation/SpringIntegration

Bitronix (JTA): A popular open source transaction manager that Spring

Boot supports for distributed JTA transactions that may span multiple

transactional resources . In order to communicated with multiple

transactional resources , the embedded Bitronix transaction manager

(BTM) is built on the X/Open XA specification and fully compliant with

the JTA 1 .1 API .

https ://github .com/bitronix/btm/wiki/Overview

Cache: As apparent from the name , this starter allows you to quickly

add caching to your application . Cache provides an abstraction that

allows consistent use of various caching solutions , such as JCache ,

EhCache 2 .x , Gemfire cache , Caffeine , and Guava with minimal impact

on the code out of the box .

https ://docs .spring .io/spring/docs/current/spring-framework-reference

/html/cache .html

Configuration Processor: Generate metadata for your custom

configuration properties . Metadata provide details of all supported

configuration properties . Using the metadata , IDE editors offer

contextual help and “code completion” as you are working with

configuration files , such as application .properties or application .yml

files .

PAGE 2

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html

http ://docs .spring .io/spring-boot/docs/current/reference

/html/configuration-metadata .html

DevTools: A module introduced in Spring Boot 1 .3 to improve the

development-time when working on Spring Boot applications . One key

feature that DevTools brings in is to set property defaults for

development . For example , caching , which is performance intensive is

disabled by default during development and h2 console is enabled by

default for a quick peek to h2-stored data . DevTools also automatically

restarts your application when any classpath file changes and can be

used to trigger a browser refresh when a resource is changed .

Additionally , DevTools supports remote application updates and

restarts .

http ://docs .spring .io/spring-boot/docs/current/reference/html/using-

boot-devtools .html

Lombok: A Java annotation library which helps to code faster by

generating boilerplate code . You can add Lombok annotations in your

source file , and Lombok will inject code based on the annotation ,

which will be immediately available to you . Simple examples are

@Getter and @Setter annotations that generates a getter and setter for

a field , respectively . The most useful and frequently used Lombok

annotation is @Data . This annotation generates overridden code for

toString(), hashCode(), equals(), and also getter and setter methods for

the fields .

http ://jnb .ociweb .com/jnb/jnbJan2010 .html

Narayana (JTA): A popular open source JTA transaction manager

PAGE 3

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

http://jnb.ociweb.com/jnb/jnbJan2010.html
https://springframework.guru/

implementation supported by JBoss . Narayana was introduced as a

starter dependency in Spring Boot 1 .4 .0 .M2 . With this dependency in

your project , Spring Boot will automatically configure Narayana and

post-process your beans to ensure that startup and shutdown ordering

is correct . With Narayana as the transaction manager in your Spring

Boot application , you can simply use JTA or Spring annotations to

manage the transactions of your application .

http ://jbossts .blogspot .in/2016/06/narayana-in-spring-boot .html

Retry: Provides declarative retry support for Spring applications in

Spring Batch , Spring Integration , Spring for Apache Hadoop , amongst

others . With this dependency , you can have methods annotated with

@Retryable . Such retryable methods are called like any other methods ,

but , whenever the method fails with an exception , Spring will

automatically retry to call the method up to the default three times .

 This dependency is must-have in your application if you have to

interact with external resources . Typical use cases include remote call

to a web service or RMI service that fails because of a network glitch .

Also , a database update 1DeadLockLoserException that may get

resolved after a short wait .

http ://www .mscharhag .com/spring/spring-retry

Security: A powerful and highly customizable authentication and

access-control framework . With Spring Security , you can implement

authentication with different providers , such as DAO , LDAP , Single

Sign-On (SSO), OpenID , and OAuth 2 .0 and also fine-grained role-based

authorization . Spring Security also protects your application against

PAGE 4

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

http://www.mscharhag.com/spring/spring-retry
https://springframework.guru/

attacks like session fixation , clickjacking , cross site request forgery , and

several other application security threats .

https ://projects .spring .io/spring-security/

Session: API and implementations for managing a user ’s session

information . Spring Session makes it easy to write horizontally scalable

cloud native applications . You can have specialized external session

stores , such as Redis or Apache Geode Storage to store the session

state . Spring Session also allows keeping the HttpSession alive when

users are making requests over Web Socket and allows multiple

sessions per browser . Spring Session also allows access to session data

from non-web request processing code , such as JMS message

processing code . In addition , with Spring Session you can write Restful

API ’s that can extract the session id from an HTTP header rather than

relying on cookies .

http ://projects .spring .io/spring-session/

Validation: Java Bean Validation (JSR-303) infrastructure that allows

validation rules to be specified directly in the code they are intended

to validate , instead of creating validation rules in separate classes .

 Spring validation is also well integrated in Spring MVC and therefore

can be effortlessly used to address the validation requirements of your

Web application .

http ://docs .spring .io/spring/docs/current/spring-framework-reference

/html/validation .html

PAGE 5

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html

PAGE 6

SPRING INITIALIZER CHEAT SHEET

Web: Enables full-stack web development with Spring Web and Spring

MVC . This Web starter brings in several dependencies for Web

development , such as Tomcat , Hibernate validator , and Jackson data

bind , which in turn brings in additional dependencies , such as Spring

AOP , Context , Expression , and JBoss logging .

https ://docs .spring .io/spring-boot/docs/current-SNAPSHOT/reference

/htmlsingle/#boot-features-developing-web-applications

Websocket: Adds capability of Web socket for two-way communication

between client and server using the SockJS and STOMP protocols . The

Websocket module is compatible with the Java WebSocket API

standard (JSR-356) and also provides additional value-add . Some uses

cases for WebSocket are web applications in finance , games ,

collaboration , and others where the client and server need to exchange

events at high frequency and with low latency .

http ://docs .spring .io/spring/docs/current/spring-framework-reference

/html/websocket .html

Web Services: Also , known as Spring-WS allows creation of document-

driven contract-first SOAP service . Spring-WS uses one of the many

JAXP APIs such as DOM , SAX , StAX , JDOM , dom4j , XOM , and even

marshalling technologies , such as JAXB , Castor , XMLBeans , JiBX , and

XStream . to manipulate XML payloads . Spring-WS is based on Spring

itself , and therefore Spring concepts such as dependency injection are

available as an integral part of your Web service . Spring-WS enforces

Web

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html

best practices such as the WS-I basic profile , Contract-First

development , and having a loose coupling between contract and

implementation .

http ://projects .spring .io/spring-ws/

Jersey (JAX-RS): A RESTful Web Services framework to build RESTful

APIs using JAX-RS specification and easily deploy it to Tomcat or any

other Spring ’s Boot supported container . Using Jersey , you write

JAX-RS endpoint classes as Spring beans in order to be able to use

Spring DI inside the JAX-RS endpoints .

https ://dzone .com/articles/using-jax-rs-with-spring-boot-instead-

of-mvc

Ratpack: Ratpack is a framework built on the highly performant and

efficient Netty event-driven networking engine . The Ratpack

framework facilitate fast , efficient , evolvable and well tested HTTP

applications . The Ratpack Spring Boot dependency provides Spring

Boot integration for the Ratpack framework . It allows the Ratpack

server registry to be created from a Spring ApplicationContext , and

Ratpack itself to be embedded in a Spring Boot application .

https ://ratpack .io/manual/current/spring .html

Vaadin: Vaadin is an open-source Java web UI framework for rich

Internet applications . The Spring Boot Vaadin dependency allows

managing rich Vaadin UI with the power of Spring . With Vaadin

integrated with Spring Boot , you can quickly get up and running a fully

PAGE 7

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://ratpack.io/manual/current/spring.html

configured environment , including a standalone server . You can also

start adding your content to the Vaadin UI class right away .

https ://vaadin .com/spring

Rest Repositories: Allows Spring Data repositories to be exposed as

REST services . With Rest Repositories , you can export JPA entities as

REST endpoints . Rest Repositories analyzes your the domain model of

your application and exposes hypermedia-driven HTTP resources for

aggregates contained in the model .

http ://docs .spring .io/spring-data/rest/docs/current/reference/html/

HATEOAS: HATEOAS that stands for Hypermedia as the Engine of

Application State , is a constraint of the REST application architecture

that decouples client and server in a way that the server can evolve

independently . As per HATEOS , a REST client needs no prior knowledge

about how to interact with any particular application or server beyond

a generic understanding of hypermedia . Spring HATEOS enables

creating REST representations that follow the HATEOAS principle when

working with Spring and especially Spring MVC .

https ://spring .io/guides/gs/rest-hateoas/

Rest Repositories HAL Browser: Allows browsing Spring Data REST

repositories in your browser . The Rest Repositories HAL Browser is a

web app that starts a HAL-powered JavaScript . You can point it at any

Spring Data REST API and use it to navigate the app and create new

resources .

PAGE 8

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://spring.io/guides/gs/rest-hateoas/

http ://api .opensupporter .org/hb2/browser .html#/api/v1

Mobile: A framework that simplifies the development of mobile web

applications . Spring Mobile is an extension to Spring MVC that that

provides capabilities to detect the type of device making a request to

your Spring web site and serve alternative views based on that device .

http ://projects .spring .io/spring-mobile/

REST Docs: Module to document RESTful services by combining

hand-written and auto-generated snippets produced with Spring MVC

Test or REST Assured . Spring REST Docs allows you to work with

details of the HTTP requests that it consumes and the HTTP responses

that it produces shielding your documentation from the inner-details

of the service ’s implementation . By default , Spring REST Docs uses

Asciidoctor , but can also be configured to use Markdown .

http ://docs .spring .io/spring-restdocs/docs/current/reference/html5/

PAGE 9

SPRING INITIALIZER CHEAT SHEET

TEMPLATE ENGINES

Freemarker: FreeMarker is a Java-based template engine for both

standalone and Web-based applications . Freemarker is commonly used

to generate text output for HTML web pages , e-mails , configuration

files , and source code . Templates are written in text files using the

FreeMarker Template Language (FTL). Spring Boot Freemarker

integrates the FreeMarker templating engine with Spring Boot

applications .

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://projects.spring.io/spring-mobile/

https://hellokoding.com/spring-boot-hello-world-example-

with-freemarker/

Velocity: Velocity is a free open-source templating engine. Its clean

separation of template and Java code makes it suitable for Web

development using the Model-View-Controller (MVC) pattern. The

Velocity Template Language (VTL) is the templating language that

provides the easiest and cleanest way to incorporate dynamic content

in a web page. Spring Boot Velocity integrates the Velocity templating

engine with Spring Boot applications.

With the deprecation of Velocity support in Spring Framework 4.3,

Velocity in Spring Boot is supported between Spring Boot 1.1.6.RELEASE

and 1.4.0.M2

http://velocity.apache.org/

Groovy Templates: Introduced in Spring Boot 1.1.0.M2, Spring Boot

Groovy Templates supports the new template engine that Groovy 2.3

provides. The Groovy template engine brings in an innovative

templating system based on the builder syntax with hierarchical

(builder) syntax to generate XML-like contents, particularly targeting

HTML5. Spring Boot Groovy Templates integrates the Groovy templating

engine with Spring Boot applications.

http://docs.groovy-lang.org/latest/html/documentation/template-

engines.html

Thymeleaf: Thymeleaf is a server-side Java template engine for both

web and standalone environments. Thymeleaf brings in elegant natural

PAGE 10

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://docs.groovy-lang.org/latest/html/documentation/template-engines.html

templates with which HTML can be correctly displayed in browsers and

also work as static prototypes . Spring Boot Thymeleaf integrates the

Thymeleaf templating engine with Spring Boot applications .

https ://springframework .guru/spring-boot-web-application-part-2-

using-thymeleaf/

Mustache: Mustache is a web template system with implementations

available for a wide set of programming languages , including Java with

JMustache . Mustache lacks any explicit control flow statements , like if

and else conditionals or for loops , and therefore is described as a

"logic-less" system . However , both looping and conditional evaluation

can be achieved using section tags processing lists and lambdas .

Spring Boot 1 .2 .2 introduced this Mustache module to provide support

for JMustache in Spring Boot application .

https ://spring .io/blog/2016/11/21/the-joy-of-mustache-server-

side-templates-for-the-jvm

PAGE 11

SPRING INITIALIZER CHEAT SHEET

SQL

JPA: Java Persistence API (JPA) provides Java developers with an

object/relational mapping facility for managing relational data in Java

applications . JPA consists of four areas : The persistence API , query

language , Java Persistence Criteria API , and Object/relational mapping

metadata . Spring Boot JPA brings in Spring Data JPA , Spring ORM , and

Hibernate to work with relational data as entities .

https ://spring .io/guides/gs/accessing-data-jpa/

SPRINGFRAMEWORK.GURU

https://spring.io/blog/2016/11/21/the-joy-of-mustache-server-side-templates-for-the-jvm
https://springframework.guru/
https://spring.io/guides/gs/accessing-data-jpa/

JOOQ: JOOQ that stands for Java Object Oriented Querying is a code

generation and SQL data access library for Java . JOOQ embeds SQL as

an internal domain-specific language directly in Java , making it easy

for developers to write and read code that almost feels like actual SQL .

Spring Boot JOOQ provides support for using JOOQ in Spring Boot

application .

http ://docs .spring .io/spring-boot/docs/1 .3 .8 .RELEASE/reference

/html/boot-features-jooq .html

MyBatis: MyBatis is a Java persistence framework with support for

custom SQL , stored procedures and advanced mappings . MyBatis

automates the mapping between SQL databases and Java objects using

an XML descriptor or annotations . Spring Boot MyBatis provides

persistence support using MyBatis in Spring Boot applications .

http ://www .mybatis .org/spring-boot-starter/mybatis-spring-

boot-autoconfigure/

JDBC: Provides an abstraction on top of JDBC API using JdbcTemplate .

 Spring Boot JDBC also provides great transaction management

capabilities using annotation based approach through

PlatformTransactionManager (DataSourceTransactionManager).

https ://spring .io/guides/gs/relational-data-access/

H2: H2 is a light , fast , and easy to use Java database that can be used

both in embedded and server mode . H2 is often used to emulate

production databases , such as Oracle , MySQL , and Postgres during

development . H2 ships with a web based database console , which you

PAGE 12

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://spring.io/guides/gs/relational-data-access/
https://springframework.guru/

can use while your application is under development . It is a convenient

way to view the database tables created by your application and run

queries against them in memory database . Out of the box , the Spring

Boot H2 module makes H2 Database very easy to use in . If the H2

database is found on your classpath , Spring Boot will automatically set

up an in memory H2 database for your use .

 https ://springframework .guru/using-the-h2-database-console-

in-spring-boot-with-spring-security/

HSQLDB : Hyper SQL Database (HSQLDB) is a relational database

management system (RDBMS) written in Java . To provide a fast ,

multithreaded , and transactional database engine with in-memory and

disk-based tables , HSQLDB supports both embedded and server modes .

Spring Boot auto configures an embedded HSQLDB instance . You don ’t

even need to provide any connection URLs . Simply include this

dependency in your application .

https ://docs .spring .io/spring-boot/docs/current/reference/html/boot-

features-sql .html

Apache Derby: A relational database management system (RDBMS)

developed by the Apache Software Foundation . With a small footprint

of about 2 .6 megabytes for the base engine and embedded JDBC driver ,

Derby makes a popular choice as an embedded database engine

during development .

https ://db .apache .org/derby/

MySQL: Provides MySQL Connector/J , the official JDBC driver for MySQL

PAGE 13

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://db.apache.org/derby/

relational database management system (RDBMS). This driver is a Type

4 JDBC driver , which means that the driver is a pure Java

implementation of the MySQL protocol and does not rely on the MySQL

client libraries .

https ://springframework .guru/configuring-spring-boot-for-mysql/

PostgreSQL: Provides PostgreSQL JDBC driver to support accessing a

PostgreSQL database from a Spring Boot application . The driver is an

open source Type 4 JDBC driver for PostgreSQL .

https ://springframework .guru/configuring-spring-boot-for-postgresql/

SQL Server: Brings in Microsoft JDBC driver for SQL Server . This driver is

a Type 4 JDBC driver that provides database connectivity to SQL Server

through the standard JDBC application program interfaces (APIs). The

Spring Boot SQL Server starter dependency has been made available

from Spring Boot 1 .5 .0 .RC1 .

https ://msdn .microsoft .com/en-us/library/mt484311(v=sql .110).aspx

Flyway: An open source database migration library that favors

simplicity and convention over configuration . Spring Boot Flyway when

included in your application will automatically autowire Flyway with its

DataSource and invoke it on startup . You can then configure a good

number of Flyway properties directly from your application .properties

or application .yml file .

https ://docs .spring .io/spring-boot/docs/current/reference/html/howto-

database-initialization .html#howto-execute-flyway-database-

migrations-on-startup
PAGE 14

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-database-initialization.html#howto-execute-flyway-database-migrations-on-startup

Liquibase: Liquibase is an open source database-independent library

for tracking , managing , and applying database schema changes . With

Spring Boot Liquibase , you can automatically run Liquibase database

migrations on startup . You don ’t even need to define a bean for

Liquibase . You only need to put your change log in db/changelog

/db .changelog-master .yaml and Liquibase migrations will run

automatically on startup .

http ://docs .spring .io/spring-boot/docs/current/reference/html/howto-

database-initialization .html

PAGE 15

SPRING INITIALIZER CHEAT SHEET

NOSQL

MongoDB: A document-based , schemaless NoSQL database designed

for Agile development . Spring Data MongoDB provides integration with

the MongoDB document database . Spring Data MongoDB provides a

POJO centric model for interacting with a MongoDB collection . With

Spring Data MongoDB , you can easily write a Repository style data

access layer in your Spring Boot application .

http ://projects .spring .io/spring-data-mongodb/

Cassandra: An open source distributed NoSQL database management

system designed to handle large amounts of data . Spring Data for

Cassandra provides a familiar and consistent Spring-based

programming model for new datastores while retaining store-specific

features and capabilities .

http ://projects .spring .io/spring-data-cassandra/

SPRINGFRAMEWORK.GURU

http://projects.spring.io/spring-data-cassandra/
http://docs.spring.io/spring-boot/docs/current/reference/html/howto-database-initialization.html
https://springframework.guru/

Couchbase: A document database with a SQL-based query language .

Couchbase provides developers to build applications easier and faster

by leveraging the power of SQL with the flexibility of JSON . Spring

Boot 1 .4 .0 MILESTONE 2 introduced a first-class integration of

Couchbase into Spring Boot .

https ://spring .io/blog/2016/04/14/couchbase-as-a-first-class-citizen-

of-spring-boot-1-4

Neo4j: Neo4j is a NoSQL graph database ideal for creating graph

database with the labeled property graph model . In this model , entities

are represented as nodes . Each node can be tagged with labels and a

node can have multiple properties . Nodes are associated with

relationship . Spring Data Neo4J provides consistent APIs that do

typical CRUD-like operations by executing queries . Typically , you have

to annotate POJOs (Plain Old Java Objects) that map the domain

objects to the underlying database .

https ://spring .io/guides/gs/accessing-data-neo4j/

Redis: Redis is a cache , message broker , and key-value store . With

Spring Data Redis , Spring Boot offers basic auto-configuration for the

Jedis client library and abstractions on top of it . Using Spring Data

Redis , you can easily configure and access Redis from Spring

applications .

http ://projects .spring .io/spring-data-redis/

Gemfire: GemFire is in-memory Data Grid powered by Apache Geode .

Gemfire provides highly available distributed cache , elastic in-memory

PAGE 16

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://projects.spring.io/spring-data-redis/

computing , transaction processing , and event notification and

processing . Spring Data GemFire simplifies building highly scalable

Spring-powered applications using Pivotal GemFire as a distributed

data management platform .

http ://projects .spring .io/spring-data-gemfire/

Solr: Apache Solr is a standalone full-text search server . Internally , Solr

uses the Lucene Java search library for full-text indexing and search .

Solr also provides REST-like HTTP/XML and JSON APIs that make it

usable from most popular programming languages . Spring Data for

Apache Solr provides easy configuration and access to Apache Solr

Search Server from Spring applications .

http ://projects .spring .io/spring-data-solr/

Elasticsearch: Elasticsearch is a search and analytics engine . it

provides a distributed , multitenant-capable full-text search engine

with a RESTful web interface and schema-free JSON documents . Spring

Data Elasticsearch contains a custom namespace allowing definition of

repository beans as well as elements for instantiating a Elasticsearch

server .

http ://docs .spring .io/spring-data/elasticsearch/docs/current/reference

/html/

PAGE 17

SPRING INITIALIZER CHEAT SHEET

CLOUD CORE

Cloud Connectors: Simplifies the process for Spring applications to

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://docs.spring.io/spring-data/elasticsearch/docs/current/reference/html/

connect to services in cloud platforms such as Cloud Foundry and

Heroku . Using Spring Cloud Connectors , applications running on cloud

platforms can discover bound services and deployment information at

runtime , and register discovered services as Spring beans .

http ://cloud .spring .io/spring-cloud-connectors/

Cloud Bootstrap: Brings in a "bootstrap" context , which is a parent

context for the main application . Out of the box , it is responsible for

loading configuration properties from the external sources , and also

decrypting properties in the local external configuration files .

http ://projects .spring .io/spring-cloud/spring-

cloud .html#_spring_cloud_context_application_context_services

Cloud Security: Offers a set of primitives to build secure applications

and services using a declarative configurable model . Using Cloud

Security , you can quickly create systems that implement common

security features , such as single sign on , token relay and token

exchange .

http ://projects .spring .io/spring-cloud/spring-

cloud .html#_spring_cloud_security

Cloud OAuth2: OAuth 2 An authorization framework that enables

applications to obtain limited access to user accounts on an HTTP

service , such as Facebook , GitHub , and Google . Cloud Oauth2 . Cloud

OAuth2 provides support for OAuth2 authorization server using the

Spring Cloud .

PAGE 18

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

http://projects.spring.io/spring-cloud/spring-cloud.html#_spring_cloud_security
https://springframework.guru/

http ://stytex .de/blog/2016/02/01/spring-cloud-security-with-oauth2/

Cloud Task: Allows you to develop and run short lived microservices

using Spring Cloud . You can run Cloud Task locally , in the cloud , or on

Spring Cloud Data Flow . Batch applications is just one example use

case of Cloud Task .

https ://cloud .spring .io/spring-cloud-task/

PAGE 19

SPRING INITIALIZER CHEAT SHEET

CLOUD CONFIG
Config Server: Provides an HTTP , resource-based API for external

configuration management of applications using name-value pairs , or

equivalent YAML content . The server is easily embeddable in a Spring

Boot application .

http ://cloud .spring .io/spring-cloud-config/spring-cloud-

config .html#_spring_cloud_config_server

Config Client: Binds to the Config Server and initialize Spring

Environment with remote property sources . Config Client supports

encryption and decryption of property values .

http ://cloud .spring .io/spring-cloud-config/spring-cloud-

config .html#_spring_cloud_config_client

Zookeeper Configuration: ZooKeeper is a centralized service for

maintaining configuration information , naming , providing distributed

synchronization , and providing group services . Spring Boot Zookeeper

Configuration provides Apache Zookeeper integrations for Spring Boot

SPRINGFRAMEWORK.GURU

https://cloud.spring.io/spring-cloud-task/
http://cloud.spring.io/spring-cloud-config/spring-cloud-config.html#_spring_cloud_config_client
https://springframework.guru/

apps through autoconfiguration and bindings .

https ://cloud .spring .io/spring-cloud-zookeeper/

Consul Configuration: Consul from HashiCorp is a highly available and

distributed service discovery and key-value store designed with

support for the modern data center . Consul Configuration provides

integrations for Spring Boot applications with HashiCorp Consul

through autoconfiguration and bindings .

https ://cloud .spring .io/spring-cloud-consul/

PAGE 20

SPRING INITIALIZER CHEAT SHEET

CLOUD DISCOVERY
Eureka Server: Eureka Server provides a REST based service that is

primarily used in the AWS cloud for locating services for the purpose of

load balancing and failover of middle-tier servers . The Spring Boot

Eureka Server starter provides support to Spring applications to

standup a Eureka Service Registry that other applications can talk to .

https ://spring .io/guides/gs/service-registration-and-discovery/#initial

Eureka Discovery: Eureka Discovery is a client-side service discovery

that allows services to find and communicate with each other without

hardcoding hostname and port . With Netflix Eureka , each client is able

to simultaneously act as a server . Spring Boot Eureka Discovery allows

Spring applications to interactively query Eureka Server given a service

ID .

https ://spring .io/guides/gs/service-registration-and-discovery/#initial

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://cloud.spring.io/spring-cloud-consul/

Zookeeper Discovery: ZooKeeper, a software project of the Apache

Software Foundation is a distributed, open-source coordination service

for distributed applications. Distributed applications can use

ZooKeeper to implement higher level services for synchronization,

configuration maintenance, and groups and naming. Spring Cloud

Zookeeper Discovery provides Apache Zookeeper integrations for

Spring Boot apps through autoconfiguration and bindings.

https://cloud.spring.io/spring-cloud-zookeeper/

Cloud Foundry Discovery: Cloud Foundry is an open source, multi cloud

application platform as a service (PaaS) governed by the Cloud Foundry

Foundation. Spring Cloud Foundry Discovery provides Apache

Zookeeper integrations for Spring Boot apps through autoconfiguration

and bindings.

https://docs.cloudfoundry.org/buildpacks/java/gsg-spring.html

Consul Discovery: Consul from HashiCorp is a highly available and

distributed service discovery and key-value store designed with

support for the modern data center. Consul Discovery provides

integrations for Spring Boot applications for discovering Consul

services.

https://cloud.spring.io/spring-cloud-consul/

PAGE 21

SPRING INITIALIZER CHEAT SHEET

CLOUD ROUTING
Zuul: Zuul is a JVM based router and server side load balancer by

Netflix . Spring Cloud Zuul provides an embedded Zuul proxy to ease

SPRINGFRAMEWORK.GURU

https://cloud.spring.io/spring-cloud-consul/
https://springframework.guru/

the development of a very common use case where a UI application

wants to proxy calls to one or more back end services.

https://bushkarl.gitbooks.io/spring-cloud/content/spring_cloud_netflix

/router_and_filter_zuul.html

Ribbon: Ribbon is a client side load balancer which gives you a lot of

control over the behaviour of HTTP and TCP clients Client Side Load

Balancing (Ribbon) With Spring Boot Ribbon, you can build Spring Boot

microservice application to provide client-side load balancing in calls

to another microservice.

https://spring.io/guides/gs/client-side-load-balancing/

Feign: Feign is a Java to Http client binder. Feign aims to connect your

code to HTTP API with minimal overhead and code. With Spring Boot

Feign, you can create rest clients for all of your services, with minimal

configuration and code.

https://bushkarl.gitbooks.io/spring-cloud/content/spring_cloud_netflix

/declarative_rest_client_feign.html

PAGE 22

SPRING INITIALIZER CHEAT SHEET

CLOUD CIRCUIT BREAKER

Hystrix: Hystrix is a latency and fault tolerance library designed to

isolate points of access to remote systems , services and 3rd party

libraries . Spring Boot Hysterix allow a Spring microservice to continue

operating when a related service fails .

https ://spring .io/guides/gs/circuit-breaker/

SPRINGFRAMEWORK.GURU

https://bushkarl.gitbooks.io/spring-cloud/content/spring_cloud_netflix/declarative_rest_client_feign.html
https://springframework.guru/
https://spring.io/guides/gs/circuit-breaker/

Hystrix Dashboard: Provides a dashboard that displays the health of

each circuit breaker from the set of metrics gathers about each Hystrix

command. Hysterix Dashboard is itself another Spring Boot application.

http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html

Turbine: Brings in an application that aggregates all of the relevant

Hysterix stream endpoints into a combined Turbine stream for use in

the Hystrix Dashboard. Note that Hystrix stream provides information

on a single application, while Turbine provides a way to aggregate this

information across all installations of an application in a cluster.

http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html

Turbine Stream: Provides circuit breaker metric aggregation. You can

configure Turbine Stream for a cluster and make it available at a URL.

The Turbine Stream figures out the instances of the cluster using

Eureka, source of the Hystrix stream from each instance, and aggregate

them.

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

PAGE 23

SPRING INITIALIZER CHEAT SHEET

CLOUD TRACING

Sleuth: Distributed tracing solution for Spring Cloud . Spring Cloud

Sleuth borrows heavily from Dapper , Zipkin and HTrace to

automatically instrument interactions with external systems in a

manner that remains transparent to users . Spring CLoud Sleuth can

capture data in logs , or by sending it to a remote collector service .

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

https ://cloud .spring .io/spring-cloud-sleuth/

Sleuth Stream: In Spring Cloud Sleuth , a Span is the basic unit of work .

For example , sending an RPC is a new span . Similarly sending a

response to an RPC is another Span . With Sleuth Stream , you can

accumulate and send span data over Spring Cloud Stream .

https ://cloud .spring .io/spring-cloud-sleuth/spring-cloud-

sleuth .html#_span_data_as_messages

Zipkin Server: A Spring Boot application , packaged as an executable

jar where Span storage and collectors are configurable . By default ,

Zipkin server listens on port 9411 , consumes Span data over HTTP , and

uses in-memory Span storage .

https ://cloud .spring .io/spring-cloud-sleuth/spring-cloud-

sleuth .html#_terminology

Zipkin UI: The UI module of the Zipkin server that provides a

single-page application to get a Zipkin service that accepts Spans and

provide visualization to run queries .

https ://github .com/openzipkin/zipkin/tree/master/zipkin-ui

Zipkin Stream: Consumes Span data in messages from Spring Cloud

Sleuth Stream and writes them to a supported Zipkin store , such as

in-memory , MySQL , Cassandra , and Elasticsearch .

https ://spring .io/blog/2016/02/15/distributed-tracing-with-spring-cloud-

sleuth-and-spring-cloud-zipkin

PAGE 24

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://spring.io/blog/2016/02/15/distributed-tracing-with-spring-cloud-sleuth-and-spring-cloud-zipkin

Zipkin Client: Enables distributed tracing with an existing Zipkin

installation .

PAGE 25

SPRING INITIALIZER CHEAT SHEET

Cloud Messaging

Cloud Bus AMQP: Advanced Message Queuing Protocol (AMQP) is an

open standard for passing business messages between applications or

organizations . Cloud Bus AMQP links nodes of a distributed system

with the AMQP message broker .

https ://projects .spring .io/spring-amqp/

Stream Rabbit: RabbitMQ is open source message broker software that

implements the Advanced Message Queuing Protocol (AMQP). Stream

Rabbit allows creating Spring messaging microservices with RabbitMQ .

https ://spring .io/guides/gs/messaging-rabbitmq/

Cloud Bus Kafka: Kafka is a fault-tolerant publish-subscribe messaging

system . Cloud Bus Kafka provides a simple control bus with Kafka . You

only need to enable the bus by adding this dependency and Spring

Cloud takes care of the rest , provided that the Kafka broker is available

and configured .

http ://cloud .spring .io/spring-cloud-static/spring-cloud-

bus/1 .2 .1 .RELEASE/#_quick_start

Stream Kafka: Kafka is a fault-tolerant publish-subscribe messaging

system . Stream Kafka allows creating Spring messaging microservices

with Kafka .

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://cloud.spring.io/spring-cloud-static/spring-cloud-bus/1.2.1.RELEASE/#_quick_start

https ://cloud .spring .io/spring-cloud-stream/

PAGE 26

SPRING INITIALIZER CHEAT SHEET

Cloud AWS

AWS Core: Amazon Web Services (AWS) provides key infrastructure

services for business through its cloud computing platform . AWS Core

provides Spring Integration adapters for the various services provided

by the AWS SDK for Java .

http ://cloud .spring .io/spring-cloud-aws/spring-cloud-aws .html

AWS JDBC: Enables application developers to re-use their JDBC

technology of choice and access the Amazon Relational Database

Service with a declarative configuration .

http ://cloud .spring .io/spring-cloud-aws/spring-cloud-

aws .html#_data_access_with_jdbc

AWS Messaging: Provides Amazon Simple Queue Service (SQS) and

Amazon Simple Notification Service (SNS) integration that simplifies

the publication and consumption of messages over SQS or SNS .

http ://cloud .spring .io/spring-cloud-aws/spring-cloud-

aws .html#_messaging

Cloud Data Flow
Local Data Flow Server: Spring Cloud Data Flow is a cloud-native

programming and operating model for composable data microservices

on a structured platform . Local Data Flow Server provides a server

implementation that runs locally .

SPRINGFRAMEWORK.GURU

https://springframework.guru/
http://cloud.spring.io/spring-cloud-aws/spring-cloud-aws.html#_messaging
https://cloud.spring.io/spring-cloud-stream/

https ://cloud .spring .io/spring-cloud-dataflow/

Data Flow Shell: A client for the Data Flow Server . The shell allows you

to perform the DSL command needed to interact with the server .

https ://cloud .spring .io/spring-cloud-dataflow/

PAGE 27

SPRING INITIALIZER CHEAT SHEET

Cluster Redis: Enables building "cluster" features , such as leadership

election , consistent storage of cluster state , global locks , and one-time

tokens with Redis ,

http ://docs .spring .io/spring-data/data-redis/docs/current/reference

/html/#cluster

Cluster Zookeeper: Enables building features , such as leadership

election , consistent storage of cluster state , global locks , and one-time

tokens with Zookeeper ensemble .

https ://zookeeper .apache .org/doc/r3 .3 .2

/zookeeperAdmin .html#sc_zkMulitServerSetup

Cluster Hazelcast: Enables building "cluster" features , such as

leadership election , consistent storage of cluster state , global locks ,

and one-time tokens with Hazelcat ,

http ://docs .hazelcast .org/docs/2 .4/manual/html/ch14 .html

Cluster Etcd: Enables building "cluster" features , such as leadership

Cloud Cluster

SPRINGFRAMEWORK.GURU

http://docs.hazelcast.org/docs/2.4/manual/html/ch14.html
https://springframework.guru/
https://cloud.spring.io/spring-cloud-dataflow/

election , consistent storage of cluster state , global locks , and one-time

tokens with Etcd .

https ://coreos .com/etcd/docs/latest/v2/clustering .html

PAGE 28

SPRING INITIALIZER CHEAT SHEET

Cloud Contract Verifier: Supports Consumer Driven Contracts and

service schemas in Spring applications , covering a range of options for

writing tests , publishing them as assets , asserting that a contract is

kept by producers and consumers , for HTTP and message-based

interactions .

https ://cloud .spring .io/spring-cloud-contract/spring-cloud-

contract .html

Cloud Contract Stub Runner: Stub Runner for HTTP/Messaging based

communication

Cloud Contract WireMock: WireMock is a simulator , also known as

service virtualization tool or a mock server for HTTP-based APIs . Cloud

Contract WireMock enables using WireMock with different servers by

using the "ambient" server embedded in a Spring Boot application .

https ://cloud .spring .io/spring-cloud-contract/spring-cloud-

contract .html#_spring_cloud_contract_wiremock

Cloud Contract

Pivotal Cloud Foundry
Config Client (PCF): Enables using a Spring Boot application as a client

for a Config Server instance on Pivotal Cloud Foundry .

SPRINGFRAMEWORK.GURU

https://coreos.com/etcd/docs/latest/v2/clustering.html
https://cloud.spring.io/spring-cloud-contract/spring-cloud-contract.html#_spring_cloud_contract_wiremock
https://springframework.guru/

https ://docs .pivotal .io/spring-cloud-services/1-3/config-server/writing-

client-applications .html

Service Registry (PCF): Provides Spring Boot applications with an

implementation of the Service Discovery pattern to perform Eureka

service discovery on Pivotal Cloud Foundry

http ://docs .pivotal .io/spring-cloud-services/1-3/service-registry/

Circuit Breaker (PCF): Pprovides Spring Boot applications with an

implementation of the Circuit Breaker pattern as Hystrix circuit breaker

on Pivotal Cloud Foundry

https ://docs .pivotal .io/spring-cloud-services/1-3/circuit-breaker/

PAGE 29

SPRING INITIALIZER CHEAT SHEET

I/O
Batch: A batch framework designed to enable the development of

batch applications vital for the daily operations of enterprise systems .

Spring Batch provides reusable functions that are essential for batch

processing – execution of a series of jobs that involves processing large

volumes of records , including logging/tracing , transaction and resource

management , and job processing statistics .

http ://projects .spring .io/spring-batch/

Integration: A framework that provides out-of-the-box implementation

of Enterprise Integration Patterns for building enterprise integration

solutions . Spring Integration enables lightweight messaging within

Spring-based applications and supports integration with external

systems via declarative adapters .

SPRINGFRAMEWORK.GURU

https://springframework.guru/
https://docs.pivotal.io/spring-cloud-services/1-3/circuit-breaker/

https ://projects .spring .io/spring-integration/

Activiti: Activiti is an enterprise Business Process Management (BPM)

solution that takes as input a process definition comprised of human

tasks and service calls and execute those in a certain order . Activiti

exposes API ’s to start , manage and query data about process instances

for that definition .

Spring Activiti provides a convention-over-configuration approach to

integrate Spring application with the Activiti ’s process engine .

https ://spring .io/blog/2015/03/08/getting-started-with-activiti-

and-spring-boot

Apache Camel: Apache Camel is an open-source integration framework

based on known Enterprise Integration Patterns . Spring Boot Apache

Camel provides auto-configuration for Apache Camel .

http ://camel .apache .org/spring-boot-example .html

JMS (ActiveMQ): Apache ActiveMQ is an open source message broker

written in Java . Spring Boot JMS (ActiveMQ) enables publishing and

subscribing to messages using ActiveMQ .

https ://spring .io/guides/gs/messaging-jms/

JMS (Artemis): Artemis is an asynchronous messaging system for

loosely coupled heterogeneous systems . With JMS (Artemis), Spring

Boot auto-configures a ConnectionFactory when it detects that Artemis

is available on the classpath .

PAGE 30

SPRING INITIALIZER CHEAT SHEET

SPRINGFRAMEWORK.GURU

https://spring.io/guides/gs/messaging-jms/
https://springframework.guru/

SPRINGFRAMEWORK.GURU

http ://docs .spring .io/spring-boot/docs/current/reference/html/boot-

features-messaging .html

JMS (HornetQ): HornetQ is an open source asynchronous Message-

oriented middleware (MOM). Spring Boot JMS (HornetQ) enables using

the Java Message Service API in a Spring Boot application with

HornetQ . HornetQ , is supported in between Spring Boot 1 .1 .0 .RELEASE

and Spring Boot 1 .4 .0 .RC1 . Post Spring Boot 1 .4 .0 .RC1 , HornetQ is

deprecated in favor of Artemis .

http ://docs .spring .io/spring-boot/docs/current/reference/html/boot-

features-messaging .html

AMQP: Applies core Spring concepts to the development of

AMQP-based messaging solutions . It provides a "template" as a

high-level abstraction for sending and receiving messages .

https ://projects .spring .io/spring-amqp/

Mail: Provides a higher level of abstraction for sending electronic mail .

Spring Mail shields a user from the specifics of underlying mailing

system and is responsible for a low level resource handling on behalf of

the client .

http ://docs .spring .io/spring-boot/docs/current/reference/html/boot-

features-email .html

LDAP: Simplifies LDAP operations , based on the pattern of Spring 's

JdbcTemplate . Spring Boot LDAP requires Spring Boot 1 .5 .0 .RC1 or

higher .

PAGE 31

SPRING INITIALIZER CHEAT SHEET

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-email.html
https://springframework.guru/

http ://projects .spring .io/spring-ldap/

PAGE 32

SPRING INITIALIZER CHEAT SHEET

Ops
Actuator: Adds several production grade services to your application

for monitoring and managing your applications . Spring Boot Actuator

exposes information via ‘endpoints ’ . Production ready features to help

you monitor and manage your application .

https ://springframework .guru/chuck-norris-for-spring-boot-actuator/

Actuator Docs: Provides API documentation for the Actuator endpoints

https ://github .com/spring-projects/spring-boot/tree/master/spring-

boot-actuator-docs

Remote Shell: Supports an integrated Java shell called CRaSH that you

can use to ssh or telnet into your running application .

http ://docs .spring .io/spring-boot/docs/current/reference

/html/production-ready-remote-shell .html

Experimental
Reactive Web: An experimental project that provides a simple way to

try the new Web Reactive support in Spring Framework 5 .0 . Reactive

programming is about non-blocking , event-driven applications that

scale with a small number of threads . Reactive Web supports

development with Apache Tomcat and requires Spring Boot

2 .0 .0 .BUILD-SNAPSHOT or higher .

https ://spring .io/blog/2016/02/09/reactive-spring

SPRINGFRAMEWORK.GURU

http://projects.spring.io/spring-ldap/
https://spring.io/blog/2016/02/09/reactive-spring
https://springframework.guru/
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-remote-shell.html

